только для медицинских специалистов

Консультант врача

Электронная медицинская библиотека

Раздел 18 / 18
Страница 1 / 1

Список литературы

  1. Yumul R., Steen S.N., Osibamiro-Sedun A. et al. Rhabdomyolysis : A his­torical review with two illustrative cases // Trauma Care. 2004. Vol. 14. P. 143–147.
  2. Маршалов Д.В., Петренко А.П., Глушач И.А. Реперфузионный синдром: понятие, определение, классификация // Патология кровообращения и кардиохирургия. 2008. Т. 3. С. 67–72.
  3. Huerta-Alardín A.L., Varon J., Marik P.E. Bench-to-bedside review: Rhabdomyolysis — an overview for clinicians // Critical. Care. 2005. Vol. 9. P. 158–169 DOI: 10.1186/cc2978.
  4. Bywaters E.G.L., Beall D. Crush injuries with impairment of renal function // British Medical J. 1941. Vol. 1, Issue 4185. P. 427–432.
  5. Еланский H.H. О травматическом токсикозе при массивных закрытых повреждениях мягких тканей // Хирургия. 1950. Т. 1. С. 3–7.
  6. Пытель А.Я. Синдром травматического сжатия конечностей. Его лечение и профилактика // Хирургия. 1951. Т. 10. С. 3–10.
  7. Fernandez W.G., Hung O.L., Bruno G.R. et al. Factors predictive of acute renal failure and need for hemodialysis among ED patients with rhabdomyolysis // Am. J. Emerg. Med. 2005. Vol. 23, N 1. P. 1–7. DOI: 10.1016/j.aiem.2004.09.025.
  8. Malinoski D.J., Slater M.S., Mullins R.J. Crush injury and rhabdomyolysis // Crit. Care Clin. 2004. Vol. 20, N 1. P. 171–192. DOI: 10.1016/S0749-0704(03)00091-5.
  9. Gibney R.T., Sever M.S., Vanholder R.C. Disaster nephrology: crush injury and beyond // Kidney Int. 2014. Vol. 85, N 5. P. 1049–1057. DOI: 10.1038/ki.2013.392.
  10. Материалы Географического обзора США. http://earthquake.usgs.gov/earthquakes/world/world_deaths.php; по состоянию на 23 мая 2013.
  11. Гавриленко А.В., Котов А.Э., Ульянов Н.Д. Прогнозирование результатов хирургического лечения больных с критической ишемией нижних конечностей методами оценки регионарного кровотока // Хирургия. 2013. Т. 5. С. 68–72.
  12. Norgren L., Hiat W.R., Dormandy J.A. et al. Inter-society consensus for the management of peripheral arterial disease (TASC II) // J. Vasc. Surg. 2007. Vol. 45. P. 5–67.
  13. Зудин А.М., Засорина М.А., Орлова М.А. Эпидемиологические аспекты хронической критической ишемии нижних конечностей // Хирургия. 2014. Т. 10. С. 91–95.
  14. Пасечник И.Н., Скобелев Е.И., Крылов В.В. и др. Абдоминальный сепсис и окислительный стресс // Хирургия. 2015. Т. 12. С. 18–23.
  15. Efstratiadis G., Voulgaridou A., Nikiforou D. et al. Rhabdomyolysis updated // Hippokratia. 2007. Vol. 11, N 3. P. 129–137.
  16. Lolai J., Burton A.T., Walsh L.T. et al. Compartment syndrome in intravenous drag abuse // Cureus. 2018. Vol. 10, N 12. P. e3683. DOI: 10.7759/cureus.3683.
  17. Gill M., Fligestone L., Keating J. et al. Avoiding, diagnosing and treating well leg compartment syndrome after pelvic surgery // Br. J. Surg. 2019. Vol. 106, N 9. P. 1156–1166. DOI: 10.1002/bjs.11177.
  18. Simms M.S., Terry T.R. Well leg compartment syndrome after pelvic and perineal surgery in the lithotomy position // Postgrad. Med. J. 2005. Vol. 81, Issue 958. P. 534–536. DOI: 10.1136/pgmj.2004.030965.
  19. Кутепов Д.Е., Жигалова М.С., Пасечник И.Н. Патогенез синдрома ишемии-реперфузии // Казанский медицинский журнал. 2018. Т. 99, № 4. С. 640–644. DOI: 10.17816/KMJ2018-640.
  20. Клинические рекомендации по ведению пациентов с сосудистой артериальной патологией (Российский согласительный документ). Часть 1. Периферические артерии / Под ред. Л.А. Бокерия. Москва : Изд-во НЦССХ им. А.Н. Бакулева РАМН. 2010. 176 с.
  21. Becker F., Robert-Ebadi H., Ricco J.B. et al. Chapter I: Definitions, epidemiology, clinical presentation and prognosis // Eur. J. Vasc. Endovasc. Surg. 2011. Vol. 42, Suppl. 2. P. 4–12.
  22. Kim J., Lee J., Kim S. et al. Exercise-induced rhabdomyolysis mechanisms and prevention: A literature review // J. Sport. Health. Sci. 2016. Vol. 5, N 3. P. 324–333. DOI: 10.1016/j.jshs.2015.01.012.
  23. Жарский С.Л., Слободянюк О.Н., Слободянюк С.Н. Рабдомиолиз, связанный с физической нагрузкой у лиц молодого возраста // Клиническая медицина. 2013. Т. 3. С. 62–65.
  24. Watson D.B., Gray G.W., Doucet J.J. Exercise rhabdomyolysis in military aircrew: two cases and a review of aeromedical disposition // Aviat, Space Environ. Med. 2000. Vol. 71, N 11. P. 1137–1141. PMID: 11086669.
  25. Tietze D.C., Borchers J. Exertional rhabdomyolysis in the athlete: a clinical review // Sports Health. 2014. Vol. 6, N 4. P. 336–339. DOI: 10.1177/1941738114523544.
  26. Alpers J.P., Jones L.K. Jr. Natural history of exertional rhabdomyolysis: a population-based analysis // Muscle Nerve. 2010. Vol. 42, N 4. P. 487–491. DOI: 10.1002/mus.
  27. Brumback R.A., Feeback D.L., Leech R.W. Rhabdomyolysis following electrical injury // Semin. Neurol. 1995. Vol. 15, N 4. P. 329–334. DOI: 10.1055/s-2008-1041040.
  28. Baccini M., Kosatsky T., Analitis A. et al. Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios // J. Epidemiol Community Health. 2011. Vol. 65, N 1. P. 64–70. DOI: 10.1136/jech.2008.085639.
  29. Малин Д.И. Злокачественный нейролептический синдром: диагностика и терапия // Современная терапия психических растройств. 2016. Т. 2. С. 2–7.
  30. Spivak B., Malin D., Kozirev V. et al. Frequency of neuroleptic malignant syndrome in a large psychiatric hospital in Moscow // Eur. Psychiatry. 2000. Vol. 15. P. 330–333.
  31. Strawn J.R., Keck P.E., Caroff S.N. Neuroleptic malignant syndrome // Am. J. Psychiatry. 2007. Vol. 164. P. 870–876.
  32. Волков В.П. Злокачественный нейролептический синдром: диагностика и лечение. Часть II (обзор современной иностранной литературы) // Психиатрия и психофармакология. 2011. Т. 1. С. 23–41.
  33. Mojtabai R., Olfson M. National trends in long-term use of antidepressant medications: results from the U.S. National Health and Nutrition Examination Survey // J. Clin. Psychiatry. 2014. Vol. 75, N 2. P. 169–177. DOI: 10.4088/JCP.13m08443.
  34. Nguyen C.T., Xie L., Alley S. et al. Epidemiology and economic burden of serotonin syndrome with concomitant use of serotonergic agents: A retrospective study utilizing two large us claims databases // Prim. Care Companion CNS Disord. 2017. Vol. 19, N 6. P. 17m02200. DOI: 10.4088/PCC.17m02200.
  35. Francescangeli J., Karamchandani K., Powell M., Bonavia A. The Serotonin syndrome: from molecular mechanisms to clinical practice // Int. J. Mol. Sci. 2019. Vol. 20, N 9. P. 2288. DOI: 10.3390/ijms20092288.
  36. Berardo A., DiMauro S., Hirano M. A diagnostic algorithm for metabolic myopathies // Curr. Neurol. Neurosci. Rep. 2010. Vol. 10, N 2. P. 118–126. DOI: 10.1007/s11910-010-0096-4.
  37. De Lonlay P., Mamoune A., Hamel Y. et al. Acute rhabdomyolysis. Neuromuscular // Diseases. 2015. Vol. 5, N 1. P. 10–18. DOI: 10.17650/2222-8721-2015-1-10-18.
  38. Quinlivan R., Jungbluth H. Myopathic causes of exercise intolerance with rhabdomyolysis // Dev. Med. Child. Neurol. 2012. Vol. 54, N 10. P. 886–891.
  39. Wilmshurst J.M., Lillis S., Zhou H. et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei // Ann. Neurol. 2010. Vol. 68, N 5. P. 717–726. DOI: 10.1002/ana.22119.
  40. Charoenpitakchai M., Wiwatwarayos K., Jaisupa N. et al. Non-neurotoxic activity of Malayan krait (Bungarus candidus) venom from Thailand // J. Venom. Anim. Toxins Incl. Trop. Dis. 2018. Vol. 24. P. 9. DOI: 10.1186/s40409-018-0146-y.
  41. Mebs D., Ownby C.L. Myotoxic components of snake venoms: their biochemical and biological activities // Pharmacol. Ther. 1990. Vol. 48, N 2. P. 223–236. DOI: 10.1016/0163-7258(90)90081-c.
  42. Ponraj D., Gopalakrishnakone P. Establishment of an animal model for myoglobinuria by use of a myotoxin from king brown snake venom mice // Lab. Anim. Sci. 1996. Vol. 46, N 4. P. 393–398.
  43. Trinh K.X., Khac Q.L., Trinh L.X., Warrell D.A. Hyponatraemia, rhabdomyolysis, alterations in blood pressure and persistent mydriasis in patients envenomed by Malayan kraits (Bungarus candidus) in southern Viet Nam // Toxicon. 2010. Vol. 56, N 6. P. 1070–1075. DOI: 10.1016/j.toxicon. 2010.06.026.
  44. Gómez M., Castañeda M., Araujo A.M. et al. Consequences of heroin consump­tion: compartmental syndrome and rhabdomyolysis // An. Sist. Sanit. Navar. 2006. Vol. 29, N 1. P. 131–135. DOI: 10.4321/s1137-66272006000100013.
  45. Goel N., Pullman J.M., Coco M. Cocaine and kidney injury: a kaleidoscope of pathology // Clin. Kidney J. 2014. Vol. 7, N 6. P. 513–517. DOI: 10.1093/ckj/sfu092.
  46. Welch R.D., Todd K., Krause G.S. Incidence of cocaine-associated rhabdomyolysis // Ann. Emerg. Med. 1991. Vol. 20. P. 154–157.
  47. Oshima Y. Characteristics of drugs-associated rhabdomyolysis: analysis of 8.610 cases reported to the US / Food and Drug administration // Intern. Med. 2011. Vol. 50, N 8. P. 845–853. DOI: 10.2169/internalmedicine.50.4484.
  48. Vanholder R., Sever M.S., Erek E., Lomeire N. Rhabdomyolysis // J. Am. Soc. Nephrol. 2000. Vol. 11. P. 1553–1561. DOI: 10.1681/ASN.V1181553.
  49. Arora R., Liebro M., Maldonado F. Statin-induced myopathy: the two faces of Janus // J. Cardiovasc. Pharmacol. Ther. 2006. Vol. 11, N 2. P. 105–112. DOI: 10.1177/1074248406288758.
  50. Betrosian A., Thireos E., Kofinas G. et al. Bacterial sepsis-induced rhabdomyolysis // Intensive Care Med. 1999. Vol. 25. P. 469–474.
  51. Byrd R.P. Jr., Roy T.M. Rhabdomyolysis and bacterial pneumonia // Respiratory Medicine. 1998. Vol. 92. P. 359–362.
  52. Пасько В.Г., Ардашев В.Н., Котенко О.Н. и др. Комплексная терапия сепсиса, осложненного развитием массивного рабдомиолиза // Лечение и профилактика. 2019. Т. 9, № 2. С. 63–68.
  53. Taxbro K., Kahlow H., Wulcan H., Fornarve A. Rhabdomyolysis and acute kidney injury in severe COVID-19 infection // BMJ Case Rep. 2020. Vol. 13, N 9. P. e237616. DOI: 10.1136/bcr-2020-237616.
  54. Lehmann H.C., Schoser B., Wunderlich G. et al. Neuromuskuläre Komplikationen einer SARS-CoV-2-Infektion — Teil 2 : Erkrankungen der Muskulatur [Neuromuscular complications of SARS-CoV-2 infection-Part 2 : muscle disorders] // Nervenarzt. 2021. Vol. 92, N 6. P. 548–555. DOI: 10.1007/s00115-021-01093-1.
  55. Saud A., Naveen R., Aggarwal R., Gupta L. COVID-19 and Myositis: what we know so far // Curr. Rheumatol. Rep. 2021. Vol. 23, N 8. P. 63. DOI: 10.1007/s11926-021-01023-9.
  56. Ruisz W., Stöllberger C., Finsterer J., Weidinger F. Furosemide-induced severe hypokalemia with rhabdomyolysis without cardiac arrest // BMC Womens Health. 2013. Vol. 13. P. 30. DOI: 10.1186/1472-6874-13-30.
  57. Shenoi A.N., Stockwell J. Recurrent rhabdomyolysis in a teenager with psychosis-intermittent hyponatremia-polydipsia syndrome // Pediatr. Emerg. Care. 2015. Vol. 31, N 4. P. 274–276.
  58. Fernando S., Sivagnanam F., Rathish D. A compulsive act of excess water intake leading to hyponatraemia and rhabdomyolysis: a case report // Int. J. Emerg. Med. 2019. Vol. 12, N 1. P. 34. DOI: 10.1186/s12245-019-0255-6.
  59. Virupannavar S., Volkov S. Unusual presentation of rhabdomyolysis in a newly diagnosed Sjögren’s syndrome associated polymyositis // Arch. Rheumatol. 2016. Vol. 20, Issue 31, N 3. P. 281–283. DOI: 10.5606/ArchRheumatol.2016.5740.
  60. Сигидин Я.А., Гусева Н.Г., Иванова М.М. Диффузные болезни соединительной ткани: Руководство для врачей. Москва : Медицина, 1994. 544 с.
  61. Tajbakhsh S., Cossu G. Establishing myogenic identity during somitogenesis // Curr. Opin. Genet. Dev. 1997. Vol. 7, N 5. P. 634–641. DOI: 10.1016/s0959-437x(97)80011-1.
  62. Mescher A.L. Junqueira’s basic histology, text and atlas. Thirteenth edition. NY : McGraw-Hill Education, 2013. 544 p.
  63. Von Maltzahn J., Chang N.C., Bentzinger C.F., Rudnicki M.A. Wnt signaling in myogenesis // Trends Cell. Biol. 2012. Vol. 22, N 11. P. 602–609. DOI: 10.1016/j.tcb.2012.07.008.
  64. Bentzinger C.F., Wang Y.X., Rudnicki M.A. Building muscle: Molecular regulation of myogenesis // Cold. Spring Harb. Perspect. Biol. 2012. Vol. 4, N 2. P. a008342. DOI: 10.1101/cshperspect.a008342.
  65. Birchmeier C., Brohmann H. Genes that control the development of migrating muscle precursor cells // Curr. Opin. Cell. Biol. 2000. Vol. 12, N 6. P. 725–730. DOI: 10.1016/s0955-0674(00)00159-9.
  66. Grifone R., Demignon J., Houbron C. et al. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo // Development. 2005. Vol. 132, N 9. P. 2235–2249. DOI: 10.1242/dev.01773.
  67. Lepper C., Fan C. Inducible lineage tracing of Pax7‐descendant cells reveals embryonic origin of adult satellite cells // Genesis. 2010. Vol 48, N 7. P. 424–436. DOI: 10.1002/dvg.20630.
  68. Mukund K., Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease // Wiley Interdiscip. Rev. Syst. Biol. Med. 2020. Vol. 12, N 1. P. e1462. DOI: 10.1002/wsbm.1462.
  69. Вихлянцев И.М., Подлубная З.А. Новые изоформы тайтина (коннектина) и их функциональная роль в поперечно-полосатых мышцах млекопитающих: факты и предположения // Успехи биологической химии. 2012. Т. 52. С. 239–280.
  70. Ross M.H., Pawlina W. Histology: a text book and atlas: with correlated cell and molecular biology. Sixth edition. Philadelphia : Lippincott Williams & Wilkins, 2011. 974 p.
  71. Гусев Н.Б. Молекулярные механизмы мышечного сокращения // Соросовский обозревательный журнал. 2000. Vol. 6, N 8. P. 24–32.
  72. Denker A., Rizzoli S.O. Synaptic vesicle pools: an update // Front. Synaptic. Neurosci. 2010. Vol. 2. P. 135. DOI : 10.3389/fnsyn.2010.00135.
  73. Fitts R.H. The cross‐bridge cycle and skeletal muscle fatigue // J. Ap­plied Physiology. 2008. Vol. 104, N 2. P. 551–558. DOI: 0.1152/japplphysiol.01200.2007.
  74. Jackman R.W., Kandarian S.C. The molecular basis of skeletal muscle atrophy // American J. Physiology: Cell Physiology. 2004. Vol. 287, N 4. P. 834–843. DOI: 10.1152/ajpcell.00579.2003.
  75. Doucet M., Russell A.P., Léger B. et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease // American J. Respiratory Critical Care Medicine, 2007. Vol. 176, N 3. P. 261–269. DOI: 10.1164/rccm.200605-704OC.
  76. Yu J.G., Bonnerud P., Eriksson A. Еffects of long term supplementation of anabolic androgen steroids on human skeletal muscle // PLoS One. 2014. Vol. 9, N 9. P. е105330. DOI: 10.1371/journal.pone.0105330.
  77. Schiaffino S., Mammucari C. Regulation of skeletal muscle growth by the IGF1‐Akt/PKB pathway: insights from genetic models // Skeletal Muscle. 2011. Vol. 1. P. 4. DOI: 10.1186/2044-5040-1-4.
  78. Varkey B., Varkey L. Muscle hypertrophy in myotonia congenital // J. Neurol. Neurosurg. Psychiatry. 2003. Vol. 74, N 3. P. 338–338. DOI: 10.1136/jnnp.74.3.338.
  79. Scharner J., Zammit P.S. The muscle satellite cell at 50: The formative years // Skeletal. Muscle. 2011. Vol. 1, N 1. P. 28. DOI: 10.1186/2044-5040-1-28.
  80. Lander A.D., Kimble J., Clevers H. et al. What does the concept of the stem cell niche really mean today? // BMC Biology. 2012. Vol. 10, N 1. P. 19. DOI: 10.1186/1741-7007-10-19.
  81. Alderton J.M., Steinhardt R.A. How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes // Trends Cardiovasc. Med. 2000. Vol. 10, N 6. P. 268–272. DOI: 10.1016/s1050-1738(00)00075-x.
  82. Yin H., Price F., Rudnicki M. Satellite cells and the muscle stem cell niche // Physiol. Rev. 2013. Vol. 93, N 1. P. 23–67. DOI: 10.1152/physrev.00043.2011.
  83. Sandri M., Sandri C., Gilbert A. et al. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy // Cell. 2004. Vol. 117, N 3. P. 399–412. DOI: 10.1016/s0092-8674(04)00400-3.
  84. Foletta V.C., White L.J., Larsen A.E. et al. The role and regulation of MAFbx/atrogin‐1 and MuRF1 in skeletal muscle atrophy // Pflugers. Arch. 2011. Vol. 461, N 3. P. 325–335. DOI: 10.1007/s00424-010-0919-9.
  85. Chaves L.O., Leon M., Eivan Sh., Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice // Crit. Care. 2016. Vol. 20, N 1. P. 135. DOI: 10.1186/s13054-016-1314-5.
  86. Пасечник И.Н. Окислительный стресс и критические состояния у хирургических больных // Вестник интенсивной терапии. 2004. Т. 3. С. 27–31.
  87. Caccese D., Pratico D., Ghiselli A. et al. Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation — role of arachidonic acid metabolism // Thromb. Haemost. 2000. Vol. 83. P. 485–490.
  88. Yates С.М., Abdelhamid М., Adam D.J. et al. Endovascular aneurysm repair reverses the increased titer and the inflammatory activity of interleukin-1alpha in the serum of patients with abdominal aortic aneurysm // J. Vasc. Surg. 2011. Vol. 54, N 2. P. 497–503.
  89. Пасечник И.Н., Мещеряков А.А., Сычев А.В. Эффективность коррекции окислительного стресса у хирургических больных с острой абдоминальной патологией в периоперационном периоде // Российские медицинские вести. 2009. Т. 3. С. 50–55.
  90. Koksal G.M. Oxidative stress and its complications in human health // Advances in Bioscience and Biotechnology. 2012. Vol. 3, Issue 8. P. 1113–1115.
  91. Rodrigues S.F., Granger D.N. Role of blood cells in ischemia-reperfusion-induced endothelial barrier failure // Cardiovasc. Res. 2010. Vol. 87, N 2. P. 291–299.
  92. Gladwin M.T., Kato G.J., Weiner D. et al. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial // JAMA. 2011. Vol. 305, N 9. P. 893–902.
  93. Carr A.C., van den Berg J.J., Winterbourn C.C. Chlorination of cholesterol in cell membranes by hypochlous acid // Arch. Biochem. Biophys. 1996. Vol. 332. P. 63–69.
  94. Torres Р.А., Helmstetter A.J., Kaye A.M., Kaye A.D. Rhabdomyolysis: pathogenesis, diagnosis, and treatment // Ochsner. J. 2015. Vol. 15, N 1. P. 58–69. PMID: 25829882.
  95. Смирнов А.В., Добронравов В.А., Румянцев А.Ш., Каюков И.Г. Острое повреждение почек. Москва : Издательство «Медицинское информационное агентство», 2015. 488 с.
  96. Baines C.P. How and when do myocytes die during ischemia and reperfusion: the late phase // J. Cardiovasc. Pharmacol. Ther. 2011. Vol. 16, N 3–4. P. 239–243. DOI: 10.3892/mmr.2016.5208.
  97. El-Abdellati Е., Eyselbergs М., Sirimsi Н. et al. An observational study on rhabdomyolysis in the intensive care unit. Exploring its risk factors and main complication: acute kidney injury // Ann. Intensive Care. 2013. Vol. 3. P. 8. DOI: 10.1186/2110-5820-3-8.
  98. Brown C., Rhee P., Chan L. et al. Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? // J. Trauma. 2004. Vol. 56. P. 1191–1196. DOI: 10.1097/01.ta.0000130761.78627.10.
  99. Kolovou G., Cokkinos P., Bilianou H. et al. Non-traumatic and non-drug-induced rhabdomyolysis // Arch. Med. Sci. Atheroscler. Dis. 2019. Vol. 4. P. 252–263. DOI: 10.5114/amsad.2019.90152.
  100. Premru V., Kovač J., Ponikvar R. Use of myoglobin as a marker and predictor in myoglobinuric acute kidney injury // Ther. Apher. Dial. 2013. Vol. 17, N 4. P. 391–395. DOI: 10.1111/1744-9987.12084.
  101. Bohlmeyer T.J., Wu A.H., Perryman M.B. Evaluation of laboratory tests as a guide to diagnosis and therapy of myositis // Rheum. Dis. Clin. North Am. 1994. Vol. 20. P. 845–856. PMID: 7855325.
  102. Nix J.S., Moore S.A. What every neuropathologist needs to know: the muscle biopsy // J. Neuropathol. Exp. Neurol. 2020. Vol. 79, N 7. P. 719–733. DOI: 10.1093/jnen/nlaa046.
  103. Hino I., Akama H., Furuya T. Pravastatininduced rhabdomyolisis in a patient with mixed connective tissue disease // Arthritis. Rheum. 1996. Vol. 39, N 7. P. 1259.
  104. Gabow P.A., Kaehny W.D., Kelleher S.P. The spectrum of rhabdomyolysis // Medicine (Baltimore). 1982. Vol. 61. P. 141–152. DOI: 10.1097/00005792-198205000-00002.
  105. Mian A.Z. Rhabdomyolysis of the head and neck: computed tomography and magnetic resonance imaging findings // Dentomaxillofacial Radiology. 2011. Vol. 40, N 6. P. 390–392. DOI: 10.1259/dmfr/52800685.
  106. Neal E., Burky S. Imaging findings in the setting of rhabdomyolysis // Appl. Radiol. 2021. Vol. 50, N 2. P. 20–25.
  107. Lamminen A., Hekali P., Tula E. et al. Acute rhabdomyolysis: evaluation with magnetic resonance imaging compared with computed tomography and ultrasonography // Br. J. Radiol. 1989. Vol. 62. P. 326–331. DOI: 10.1259/0007-1285-62-736-326.
  108. Moratalla M.B., Braun P., Fornas G.M. Importance of MRI in the diagnosis and treatment of rhabdomyolysis // Eur. J. Radiol. 2008. Vol. 65, N 2. P. 311–315. DOI: 10.1016/j.ejrad.2007.03.033.
  109. Бардаков С.Н., Бельских А.Н., Рыжман Н.Н. и др. Магнитно-резонансная томография мышц в диагностике постнагрузочного рабдомиолиза // Лучевая диагностика и терапия. 2019. Т. 2, № 10. С. 91–101. DOI: 10.22328/2079-5343-2019-10-2-91-101.
  110. Wild J.J., Neal D. Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues // Lancet. 1951. Vol. 1. P. 655–657. DOI: 10.1016/s0140-6736(51)92403-8.
  111. Heckmatt J.Z., Dubowitz V., Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging // Lancet. 1980. Vol. 1, N 8183. P. 1389–1390. DOI: 10.1016/s0140-6736(80)92656-2.
  112. Cosgrove D. Ultrasound: general principles. In: Diagnostic radiology. Edinburgh : Churchill Livingstone, 1992. P. 65–77.
  113. Saupe N., Prüssmann K.P., Luechinger R. et al. MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging-preliminary experience // Radiology. 2005. Vol. 234. P. 256–264. DOI: 10.1148/radiol.2341031596.
  114. Pillen S. Skeletal muscle ultrasound // Eur. J. Translat. Myology. 2010. Vol. 1, N 4. P. 145–155.
  115. Делягин В.М. Ультразвуковое исследование мышц в норме и при нейромышечной патологии // Sonoace Ultrasound. 2015. N 27. P. 68–73.
  116. Ристегини П. Ультразвуковая диагностика болезней костно-мышечной системы и инъекции под ультразвуковым контролем: практическое руководство. Москва : МЕДпресс-информ, 2019. C. 22–31.
  117. Болвиг Л., Фредберг У., Размуссен О.Ф. Учебник ультразвуковых исследований костно-мышечной системы. Москва : Издательский дом «Видар-М», 2020. C. 20–27.
  118. Салтыкова В.Г. Методика ультразвукового исследования и нормальная эхографическая картина седалищного нерва // Ультразвуковая и функциональная диагностика. 2009. Т. 6. С. 78–81.
  119. Еськин Н.А., Матвеева Н.Ю., Приписнова С.Г. Ультразвуковое исследование периферической нервной системы // SonoAce International. 2008. Т. 18. С. 65–75.
  120. Heckmatt J.Z., Leeman S., Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease // J. Pediatr. 1982. Vol. 101, N 5. P. 656–660. DOI: 10.1016/s0022-3476(82)80286-2.
  121. Зубарев А.В., Гажонова В.Е., Хохлова Е.Н. и др. Эластография — новый метод поиска рака различных локализаций // Радиология-Практика. 2008. Т. 6. С. 6–18.
  122. Arda K., Ciledag N., Aktas E. et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave elastography // AJR Am. J. Roentgenol. 2011. Vol. 197. P. 532–536. DOI: 10.2214/AJR.10.5449.
  123. Kaplan G.N. Ultrasonic apperance of rhabdomyolysis // AJR Am. J. Roentgenol. 1980. Vol. 134, N 2. P. 375–377. DOI: 10.2214/ajr.134.2.375.
  124. Fornage B.D., Nerot C. Sonographic diagnosis of rabdomyolysis // J. Clin. Ultrasound. 1986. Vol. 14. P. 389–392. DOI: 10.1002/jcu.1870140512.
  125. Su B.H., Qiu L., Fu P. et al. Ultrasonic appearance of rhabdomyolysis in patients with crush injury in the Wenchuan earthquake // Chin. Med. J. (Engl.). 2009. Vol. 122. P. 1872–1876.
  126. Steeds R.P., Alexander P.J., Muthusamy R. et al. Sonography in the diagnosis of rhabdomyolysis // J. Clin. Ultrasound. 1999. Vol. 27, N 9. P. 531–533. DOI: 10.1002/(sici)1097-0096(199911/12)27:9<531::aid-jcu7>3.0.co;2-8.
  127. Chiu Y.-N., Wang T.-G., Hsu Ch.-Y. et al. Sonographic Diagnosis of Rhabdomyolysis // J. Med. Ultrasound. 2008. Vol. 16, N 2. P. 158–162.
  128. Ольхова Е.Б., Музуров А.Л., Генералова Г.А., Гуленков А.С. Ультразвуковая диагностика рабдомиолиза у ребенка (клиническое наблюдение) // Радиология-Практика. 2017. Т. 6, № 66. С. 72–80.
  129. Carrillo-Esper R., Galván-Talamantes Y., Meza-Ayala C.M. et al. Ultrasound findings in rhabdomyolysis // Cirugía y Cirujanos. 2016. Vol. 84, N 6. P. 518–522. DOI: 10.1016/j.circir.2015.06.036.
  130. Nassar A., Talbot R., Grant A., Derr C. Rapid diagnosis of rhabdomyolysis with point-of-care ultrasound // West J. Emerg. Med. 2016. Vol. 17, N 6. P. 801–804. DOI: 10.5811/westjem.2016.8.31255.
  131. Кутепов Д.Е., Фёдорова А.А., Бажина Е.С. и др. Эффективность системы CYTOSORB® у больных рабдомиолизом различной этиологии. Пилотное исследование // Кремлевская медицина. 2021. Т. 2. С. 29–35. DOI: 10.26269/g87h-2h50.
  132. Hue V., Martinot A., Fourier C. et al. Acute rhabdomyolisis in the child // Arch. Pediatr. 1998. Vol. 5, N 8. Р. 887–895.
  133. Клинические практические рекомендации KDIGO по острому почечному повреждению. KDIGO Clinical Practice Guideline for Acute Kidney Injury Kidney International supplements. 2012. Vol. 2, Issue 1. http://www.kidney-international.org.
  134. Смирнов А.В., Добронравов В.А., Румянцев А.Ш., Каюков И.Г. Острое повреждение почек. Москва : Издательство «Медицинское информационное агентство», 2015. 488 с.
  135. Руководство по экстракорпоральному очищению крови в интенсивной терапии / Под ред. Л.А. Бокерия, М.Б. Ярустовского. Москва : НЦССХ им. А.Н. Бакулева РАМН, 2009. 486 с.
  136. Смирнов А.В., Добронравов В.А., Румянцев А.Ш. и др. Национальные рекомендации. Острое повреждение почек: основные принципы диагностики, профилактики и терапии. Часть I // Нефрология. 2016. Т. 20, № 1. С. 79–104.
  137. Уразаева Л.И., Максудова А.Н. Биомаркеры раннего повреждения почек: обзор литературы // Практическая медицина. 2014. Т. 1, № 4. С. 125–130.
  138. Siew E.D., Ikizler T.A., Gebretsadik T. et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes // Clin. J. Am. Soc. Nephrol. 2010. Vol. 5, N 8. P. 1497–1505.
  139. Nickolas T.L., Schmidt-Ott K.M., Canetta P. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study // J. Am. Coll. Cardiol. 2012. Vol. 59, N 3. P. 246–255.
  140. De Geus H.R., Betjes M.G., Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges // Clin. Kidney J. 2012. Vol. 5, N 2. P. 102–108. DOI: 10.1093/ckj/sfs008.
  141. Koyner J.L., Vaidya V.S., Bennett M.R. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury // Clin. J. Am. Soc. Nephrol. 2010. Vol. 5, N 12. P. 2154–1265.
  142. Endre Z.H., Pickering J.W., Walker R.J. et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function // Kidney Int. 2011. Vol. 79, N 10. P. 1119–11130.
  143. Siew E.D., Ikizler T.A., Gebretsadik T. et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes // Clin. J. Am. Soc. Nephrol. 2010. Vol. 5, N 8. P. 1497–1505.
  144. Portilla D., Dent C., Sugaya T. et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery // Kidney Int. 2008. Vol. 73, N 4. P. 465–472. DOI: 0.1038/sj.ki.5002721.
  145. Sprenkle P., Russo P. Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? // Arch. Esp. Urol. 2013. Vol. 66, N 1. P. 99–114. PMID: 23406805.
  146. Kalfa T.A. Warm antibody autoimmune hemolytic anemia // Hematology Am. Soc. Hematol. Educ. Program. 2016. Vol. 2016, N 1. P. 690–697. DOI: 10.1182/asheducation-2016.1.690.
  147. Berentsen S., Tjønnfjord G.E. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia // Blood Rev. 2012. Vol. 26, N 3. P. 107–115. DOI: 10.1016/j.blre.2012.01.002.
  148. Berentsen S. New insights in the pathogenesis and therapy of cold agglutinin-mediated autoimmune hemolytic anemia // Front. Immunol. 2020. Vol. 11. P. 590. DOI: 10.3389/fimmu.2020.00590.
  149. Sundd P., Gladwin M.T., Novelli E.M. Pathophysiology of sickle cell disease // Annu. Rev. Pathol. 2019. Vol. 14. P. 263–292. DOI: 10.1146/annurev-pathmechdis-012418-012838.
  150. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 // Lancet. 2015. Vol. 385, N 9963. P. 117–1171. DOI: 10.1016/S0140-6736(14)61682-2.
  151. Brodsky R.A. Paroxysmal nocturnal hemoglobinuria // Blood. 2014. Vol. 124, No 18. P. 2804–2811. DOI: 10.1182/blood-2014-02-522128.
  152. Блэйкли С. Почечная недостаточность и заместительная терапия (Комплексное лечение критических состояний / Под ред. Е.А. Стецюка.
    Москва : Издательский дом «Видар-М», 2013. 160 с.
  153. Anderson K.E., Sassa S., Bishop D.F., Desnick R.J. In: The Online Metabolic & Molecular Basis of Inherited Disease. NY : McGraw-Hill, 2011. P. 1–153.
  154. Ramanujam V.S., Anderson K.E. Porphyria diagnostics. Part 1 : A brief overview of the porphyrias // Curr. Protoc. Hum. Genet. 2015. Vol. 86. P. 17.20.1–17.20.26. DOI: 10.1002/0471142905.hg1720s86.
  155. European Porphyria Network. 2012. www.porphyria-europe.org.
  156. Elder G.H., Harper P., Badminton M. et al. The incidence of inherited porphyrias in Europe // J. Inherit. Metab. Dis. 2013. Vol. 36. P. 849–857. DOI: 10.1007/s10545-012-9544-4.
  157. Аверков О.В., Дупляков Д.В., Гиляров М.Ю. и др. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020 // Российский кардиологический журнал. 2020. Т. 25, № 11. С. 251–310. DOI: 10.15829/1560-4071-2020-4103.
  158. Basso C., Calabrese F., Corrado D., Thiene G. Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings // Cardiovasc. Res. 2001. Vol. 50, N 2. P. 290–300. DOI: 10.1016/s0008-6363(01)00261-9.
  159. Caforio A.L., Pankuweit S., Arbustini E. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases // Eur. Heart. J. 2013. Vol. 34, N 33. P. 2636–2648, 2648a–2648d. DOI: 10.1093/eurheartj/eht210.
  160. Yamagishi K., Ohira T., Nakano H. et al. Cross-cultural comparison of the sleep-disordered breathing prevalence among Americans and Japanese // Eur. Respir. J. 2010. Vol. 36, N 2. P. 379–384. DOI: 10.1183/09031936.00118609.
  161. Canto Gde L., Pachêco-Pereira C., Aydinoz S. et al. Biomarkers associated with obstructive sleep apnea: A scoping review // Sleep Med. Rev. 2015. Vol. 23. P. 28–45. DOI: 10.1016/j.smrv.2014.11.004.
  162. Lentini S., Manka R., Scholtyssek S. et al. Creatine phosphokinase elevation in obstructive sleep apnea syndrome: an unknown association? // Chest. 2006. Vol. 129, N 1. P. 88–94. DOI: 10.1378/chest.129.1.88.
  163. Bäumer D., Talbot K., Turner M.R. Advances in motor neurone disease // J. R. Soc. Med. 2014. Vol. 107, N 1. P. 14–21. DOI: 110.1177/0141076813511451.
  164. Бакулин И.С., Закройщикова И.В., Супонева Н.А., Захарова М.Н. Боковой амиотрафический склероз: клиническая гетерогенность и подходы к классификации // Нервно-мышечные болезни. 2017. Т. 7, № 3. С. 10–20. DOI: 10.17650/2222-8721-2017-7-3-10-20.
  165. Cheng Y., Chen Y., Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis // Transl. Neurodegener. 2021. Vol. 10, N 1. P. 3. DOI: 10.1186/s40035-020-00228-9.
  166. Ito D., Hashizume A., Hijikata Y. et al. Elevated serum creatine kinase in the early stage of sporadic amyotrophic lateral sclerosis // J. Neurol. 2019. Vol. 266, N 12. P. 2952–2961. DOI: 10.1007/s00415-019-09507-6.
  167. Kyriakides T., Angelini C., Schaefer J. et al. European Federation of Neurological Societies. EFNS guidelines on the diagnostic approach to pauci- or asymptomatic hyperCKemia // Eur. J. Neurol. 2010. Vol. 17, N 6. P. 767–773. DOI: 10.1111/j.1468-1331.2010.03012.x.
  168. Евдокимова Н.Е., Цыганкова О.В., Латынцева Л.Д. Синдром повышенной креатинфосфокиназы плазмы как диагностическая дилемма // Русский медицинский журнал. 2021. Т. 2. С. 18–25.
  169. Guo H., Jia X., Liu H. Based on biomedical index data: Risk prediction model for prostate cancer // Medicine (Baltimore). 2021. Vol. 100, N 17. P. e25602. DOI: 10.1097/MD.0000000000025602.
  170. Chang C.C., Liou C.B., Su M.J. et al. Creatine kinase (CK) — MB-to-total-CK ratio: a laboratory indicator for primary cancer screening // Asian. Pac. J. Cancer. Prev. 2015. Vol. 16, N 15. P. 6599–6603. DOI: 10.7314/apjcp.2015.16.15.6599.
  171. Vanholder R., Sever M.S., Erek E., Lameire N. Rhabdomyolysis // J. Am. Soc. Nephrol. 2000. Vol. 11, N 8. P. 1553–1561. PMID: 10906171.
  172. Sever M.S., Vanholder R., Ashkenazi L. et al. Recommendation for the management of crush victims in mass disasters // Nephrol. Dial. Transplant. 2012. Vol. 27, Suppl. 1. P. 1–67. DOI: 10.1093/ndt/qfr716.
  173. Scharman E.J., Troutman W.G. Prevention of kidney injury following rhabdomyolysis: a systematic review // Ann. Pharmacother. 2013. Vol. 47, N 1. P. 90–105. DOI: 10.1345/aph.1R215.
  174. Bosch X., Poch E., Grau J.M. Rhabdomyolysis and acute kidney injury // N. Engl. J. Med. 2009. Vol. 361, N 1. P. 62–72. DOI: 10.1056/NEJMra0801327.
  175. Berend K., de Vries A.P., Gans R.O. Physiological approach to assessment of acid-base disturbances // N. Engl. J. Med. 2015. Vol. 372, N 2. P. 195. DOI: 10.1056/NEJMra1003327.
  176. Somagutta M.R., Pagad S., Sridharan S. et al. Role of bicarbonates and mannitol in rhabdomyolysis: a comprehensive review // Сureus. 2020. Vol. 12, N 8. P. 9742. DOI: 10.7759/cureus.9742.
  177. Brown C.V.R., Rhee P., Chan L. et al. Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? // J. Trauma. 2004. Vol. 56, N 6. P. 1191–1196. DOI: 10.1097/01.ta.0000130761.78627.10.
  178. Соколов А.А., Соловьев А.Г. Русские пионеры терапевтического гемафереза и экстракорпоральной гемокоррекции. К 100-летию первого в мире плазмафереза // Эфферентная терапия. 2013. Т. 19, № 1. С. 3–9.
  179. Cornelissen J.J., Haanstra W., Haarman H.J., Derksen R.H. Plasma exchange in rhabdomyolysis // Intensive Care Med. 1989. Vol. 15. P. 528–529. DOI: 10.1007/BF00273565.
  180. Yang K.C., Fang C.C., Su T.C., Lee Y.T. Treatment of fibrate-induced rhabdomylysis with plasma exchange in ESRD // Am. J. Kidney Dis. 2005. Vol. 45. P. e57–e60. DOI: 10.1053/j.ajkd.2004.12.003.
  181. Swaroop R., Zabaneh R., Parimoo N. Plasmapheresis in a patient with rhabdomyolysis: a case report // Cases Journal. 2009. Vol. 2. P. 8138. DOI: 10.4076/1757-1626-2-8138.
  182. Воробьев П.А. Прерывистый лечебный плазмаферез. Практическое руководство для врачей и медицинских сестер. Москва : Ньюдиамед-АО, 1998. 204 с. DOI: 10.4076/1757-1626-2-8138.
  183. Kuntsevich V.I., Feinfeld D.A., Audia P.F. et al. In-vitro myoglobin clearance by a novel sorbent system // Artif. Cells Substit. Immobile Biotechnol. 2009. Vol. 37, N 1. P. 45–47. DOI: 10.1080/10731190802664379.
  184. Cianciotta F., Pertosa G.B., Gesualdo L. Crush syndrome: excellent recovery of renal function by using hemoadsorption (Cytosorb® Adsorber) // A Case Report. Blood Purif. 2018. Vol. 46. P. 163–186. DOI: 10.1159/000490123.
  185. Doronzio A., Riva I., Fabretti F. et al. Use of haemoadsorption with cytosorb in patients with severe acute rhabdomyolysis: a case series // Blood Purif. 2019. Vol. 47, Suppl. 4. P. 28–29. DOI: 10.1159/000500179.
  186. Romito F.M., Armento M., Caniglia F. et al. Treatment of post-traumatic rhabdomyolysis with a combined purification strategy: a case report // Blood Purif. 2019. Vol. 47, Suppl. 4. P. 30–31. DOI: 10.1159/000500179.
  187. Scharf C., Liebchen U., Paal M. et al. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis // Critical Care. 2021. Vol. 25, N 1. P. 41. DOI: 10.1186/s13054-021-03468-х.
  188. Tolwani A. Continuous renal-replacement therapy for acute kidney injury // N. Engl. J. Med. 2012. Vol. 367, N 26. P. 2505–2514.
  189. Tandukar S., Palevsky P.M. Continuous renal replacement therapy: who, when, why, and how // Chest. 2019. Vol. 155, N 3. P. 626–638. DOI: 10.1016/j.chest.2018.09.004.
  190. Hoste E.A., Bagshaw S.M., Bellomo R. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study // Intensive Care Med. 2015. Vol. 41, N 8. P. 1411–1423.
  191. Ricci Z., Romagnoli S., Ronco C. Renal replacement therapy // F1000Research. 2016. Vol. 5. P. F1000. DOI: 10.12688/f1000research.6935.1.
  192. Ярустовский М.Б., Рей С.И., Белых А.Н. и др. Современные методы экстракорпоральной детоксикации в комплексном лечении сепсиса. В кн.: Сепсис: классификация, клинико-диагностическая концепция и лечение / Под ред. акад. РАН Б.Р. Гельфанда. Москва : ООО «Медицинское информационное агентство», 2017. С. 229–254.
  193. Dellinger R.P., Levy M.M., Carlet J.M. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008 // Crit. Care Med. 2008. Vol. 36, N 1. P. 296–327. DOI: 10.1097/01.CCM.0000298158.12101.41.
  194. Vinsonneau C., Camus C., Combes A. et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentrerandomised trial // Lancet. 2006. Vol. 368, N 9533. P. 379–385. DOI: 10.1016/S0140-6736(06)69111-3.
  195. Baldwin I., Naka T., Koch B. et al. A pilot randomised controlled comparison of continuous veno-venous haemofiltration and extended daily dialysis with filtration: effect on small solutes and acid-base balance // Intensive Care Med. 2007. Vol. 33, N 5. P. 830–835. DOI: 10.1007/s00134-007-0596-0.
  196. Vaara S.T., Reinikainen M., Wald R. et al. Timing of RRT based on the presence of conventional indications // Clin. J. Am. Soc. Nephrol. 2014. Vol. 9, N 9. P. 1577–1585. DOI: 10.2215/CJN.12691213.
  197. Barbar S.D., Clere-Jehl R., Bourredjem A. et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis // N. Engl. J. Med. 2018. Vol. 379. P. 1431–1442.
  198. Andonovic M., Shemilt R., Sim M. et al. Timing of renal replacement therapy for patients with acute kidney injury: A systematic review and meta-analysis // J. Intensive Care Soc. 2021. Vol. 22, N 1. P. 67–77. DOI: 10.1177/1751143720901688.
  199. Ronco C., Bellomo R., Homel P. et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial // Lancet. 2000. Vol. 356, N 9223. P. 26–30. DOI: 10.1016/S0140-6736(00)02430-2.
  200. Bellomo R., Cass A., Cole L. et al. Intensity of continuous renal-replacement therapy in critically ill patients // N. Engl. J. Med. 2009. Vol. 361, N 17. P. 1627–1638. DOI: 10.1056/NEJMoa0902413.
  201. Palevsky P.M., Zhang J.H., O'Connor T.Z. et al. Intensity of renal support in critically ill patients with acute kidney injury // N. Engl. J. Med. 2008. Vol. 359, N 1. P. 7–20. DOI: 10.1056/NEJMoa0802639.
  202. Combes A., Bréchot N., Amour J. et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock // Am. J. Respir. Crit. Care Med. 2015. Vol. 192, N 10. P. 1179–1190. DOI: 10.1164/rccm.201503-0516OC.
  203. Clark E., Molnar A.O., Joannes-Boyau O. et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis // Crit. Care. 2014. Vol. 18, N 1. P. R7. DOI: 10.1186/cc13184.
  204. Vásquez Jiménez E., Anumudu S.J., Neyra J.A. Dose of сontinuous renal replacement therapy in critically ill patients: a bona fide quality indicator // Nephron. 2021. Vol. 145, N 2. P. 91–98. DOI: 10.1159/000512846.
  205. Uchino S., Bellomo R., Morimatsu H. et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study // Crit. Care Med. 2009. Vol. 37, N 9. P. 2576–2582. DOI: 10.1097/CCM.0b013e3181a38241.
  206. Viallet N., Brunot V., Kuster N. et al. Daily urinary creatinine predicts the weaning of renal replacement therapy in ICU acute kidney injury patients // Ann. Intensive Care. 2016. Vol. 6, N 1. P. 71. DOI: 10.1186/s13613-016-0176-y.
  207. Stads S., Kant K.M., de Jong M.F.C. et al. Predictors of 90-day restart of renal replacement therapy after discontinuation of continuous renal replacement therapy, a prospective multicenter study // Blood Purif. 2019. Vol. 48, N 3. P. 243–252. DOI: 10.1159/000501387.
  208. Ronco С. Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance // Critical Care. 2005. Vol. 9. P. 141–142. DOI: 10.1186/cc3055.
  209. Petejova N., Martine K.A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review // Critical Care. 2014. Vol. 18, N 3. P. 224. DOI: 10.1186/cc13897.
  210. Naka T., Jones D., Baldwin I. et al. Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis: a case report // Critical Care. 2005. Vol. 9. P. R90–R95. DOI: 10.1186/cc3034.
  211. Premru V., Kovač J., Buturović-Ponikvar J., Ponikvar R. High cut-off membrane hemodiafiltration in myoglobinuric acute renal failure: a case series // Ther. Apher. Dial. 2011. Vol. 15. P. 287–291. DOI: 10.1111/j.1744-9987.2011.00953.x.
  212. Sorrentino S.A., Kielstein J.T., Lukasz A. et al. High permeability dialysis membrane allows effective removal of myoglobin in acute kidney injury resulting from rhabdomyolysis // Crit. Care Med. 2011. Vol. 39. P. 184–186. DOI: 10.1097/CCM.0b013e3181feb7f0.
  213. Heyne N., Guthoff M., Krieger J. et al. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series // Nephron. Clin. Pract. 2012. Vol. 121, N 3–4. P. 159–164. DOI: 10.1159/000343564.
  214. Weidhase L., de Fallois J., Haußig E. et al. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial // Critical Care. 2020. Vol. 24. P. 644. DOI: 10.1186/s13054-020-03366-8.
  215. Дэвенпорт Э. Современные принципы антикоагуляции у больных в критическом состоянии, нуждающихся в экстракорпоральной терапии. В кн.: Руководство по экстракорпоральному очищению крови в интенсивной терапии / Под ред. Л.А. Бокерия, М.Б. Ярустовского. Москва : НЦССХ им. А.Н. Бакулева МЗ РФ. 2016. С. 27–299.
  216. Gajra A., Vajpayee N., Smith A. et al. Lepirudin for anticoagulation in patients with heparin-induced thrombocytopenia treated with continuous renal replacement therapy // Am. J. Hematol. 2007. Vol. 82, N 5. P. 391–393. DOI: 10.1002/ajh.20820.
  217. Klingele M., Bomberg H., Lerner-Gräber A. et al. Use of argatroban: experiences in continuous renal replacement therapy in critically ill patients after cardiac surgery // J. Thorac. Cardiovasc. Surg. 2014. Vol. 147, N 6. P. 1918–1924. DOI: 10.1016/j.jtcvs.2013.11.051.
  218. Matsuo T., Kario K., Nakao K. et al. Anticoagulation with nafamostat mesilate, a synthetic protease inhibitor, in hemodialysis patients with a bleeding risk // Haemostasis. 1993. Vol. 23, N 3. P. 135–141. DOI: 10.1159/000216866.
  219. Akizawa T., Koshikawa S., Ota K. et al. Nafamostat mesilate: a regional anticoagulant for hemodialysis in patients at high risk for bleeding // Nephron. 1993. Vol. 64, N 3. P. 376–381. DOI: 10.1159/000187357.
  220. Ahmed A.R., Obilana A., Lappin D. Renal replacement therapy in the critical care setting // Crit. Care Res. Pract. 2019. Vol. 16. P. 6948710. DOI: 10.1155/2019/6948710.
  221. Lindhoff-Last E., Betz C., Bauersachs R. Use of a low-molecular-weight heparinoid (danaparoid sodium) for continuous renal replacement therapy in intensive care patients // Clin. Appl. Thromb. Hemost. 2001. Vol. 7, N 4. P. 300–304. DOI: 10.1177/107602960100700409.
  222. De Pont A.-C.J., Hofstra J.-J.H., Pik D.R. et al. Pharmacokinetics and pharmacodynamics of danaparoid during continuous venovenous hemofiltration: a pilot study // Critical Care. 2007. Vol. 11, N 5. P. R102. DOI: 10.1186/cc6119.
  223. Хорошилов С.Е., Карпун Н.А., Ильченко А.М. и др. Экстракорпоральная детоксикация у пострадавших с тяжелой сочетанной травмой // Общая реаниматология. 2009. Т. 5, № 5. С. 16–19. DOI: 10.15360/1813-9779-2009-5-16.

Для продолжения работы требуется вход / регистрация